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ABSTRACT

A YIG oscillator tunable over 3.8
-30.GHz band has been developed. The aim
of the paper is to analyze the
oscillator and to discuss those of its
properties which are critical for wide-
band and high frequency performance.
The paper consists of two parts: in the
first one the methods of small signal
analysis are used for wide-band design,
the second part is focused on nonlinear
properties of the oscillations.

Sr

r

o

*

OSCILLATOR CIRCUIT

The oscillator shown in Fig.la has
been built as a -hybrid microstrip
circuit. Choice of active devices and
YIG spheres has been critical for
oscillator performance.

We have used commercially available
MESFETts and HEMT’s of o.25pm and 0.3~m
gate-length. The oscillator transistor
was selected for high transconductance
and the first amplifier transistor for
matching properties.

The choice of YIG sphere involved
trade-offs between bandwidth (which
improves with strong coupling) and sup-
pression of higher order modes (which
requires weak coupling) . Moreover,
sphere dimensions are limited by gap
size which in turn is constrained by
tuning linearity and overall size of the
device.

SMALL SIGNAL DESIGN

The standard oscillator design
methods [4,5,6] consist of analyzing the
stability circles for the oscillator
circuit and designing the load that
assures oscillations in the desired

band. Similarly if one works with a
fixed load one can also us.= stability
circles to design the feedback circuit
(Xf in Fig.la ) for the required band,
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b) power spectra for different

YIG spheres:[A] 3.2-31. GHz,

[D] 3,8-32.GHz, measured to 30. GHz

Fig. 1.

The above analysis has simple
interpretation in terms of reflection
coefficients.

Isr, sill> 1

Namely the circuit can
only if the inequality

(1)

oscillate if and
(1) holds.
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our first task is to obtain the
widest possible instability regions and
to design the load that fits those
regions (over the band). We achieve this
by careful choice of the YIG sphere and
proper coupling, then by the wide-band
impedance matching.

SMALL VS. LARGE SIGNAL DESIGN

The stability circles approach
gives us important information about
oscillations conditions (circuit
stability) and consequently the
oscillator’s band. Moreover, the method
is relatively simple. Restriction to
!Ismall signals!!, however, that makes the

method simple, renders it useless for
analysis of the steady state
oscillations which are intrinsically
nonlinear.

The next design task is to predict
properties of steady state oscillations,
in particular to estimate signal power,
harmonic content, frequency stability,
and resonances which appear over the
band.

When the condition (1) is
satisfied, then oscillations in the
system will grow causing the decrease of
S11 until

Sr”Sll = 1 (2)

Clearly the designers aim is to
find the widest possible band in which
the condition (l),and consequently the
condition (2),holds. That was by this
method that the 3.8-30 GHz band was
achieved.

Equations (1) and (2) have simple
geometrical interpretation shown in
Fig.2. Let us note that in the
neighborhood of resonance frequency the
reflection coefficient Sll remains
almost constant in frequency ( at least
when compared to Sr ) . Therefore the
variables in equation (2) can be
separated.

Sr(w)”Sll(A) = 1 (3)

Consequently the amplitude and frequency
of oscillations become simple to
determine.

/

toFig.2. Illustration

equations (l),(Z),(3)

[A] Sr(w) which is linear

[B] small signal Sil(w)

[C] Variation of SII(A)

for fixed w.

The equation (1) describes

oscillations of growing amplitude while
equation (2) and (3) describe a steady
state sinusoidal oscillations.

LARGE SIGNAL ANALYSIS AND THEORY

Let us specify the precise meaning
of !Ilarge signalft analysis or “large
signalt! s-parameters.

1. Harmonic balance.

The best known and closely related
to phasor method is the method of
harmonic balance. Consider the
system shown in Fig.3. If the system
possesses periodic oscillations, then,
in the steady state, it can be

represented by an infinite system of
equations

= H(jnw) fn(xo,xl,x2, ...)‘n
(4)

where n= 0,+1,+2, . . .

x(t) =Sxn exp(jnwt) represents

the oscillations

fn(xo,x1,x2, . . .) represents n-th

Fourier coefficient of f(x(t)).
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Fig.3. Block diagram

of the oscillator

The method is based on assumption
that the oscillations are close to
sinusoidal i.e. x(t) = Acos(wt+p) and
their amplitude and frequency can be
found from HARMONIC BALANCE equation

H(jw) F(A)/A = 1 (5)

where F(A) is the first harmonic of
f(Acos(wt)).

one can prove [7] that if the
equation (5) possesses a “regular”
solution and if the !Ifilter” H(jw) is
selective enough, then the original
system (4) possesses oscillations that
are close to the ones obtained from (5).
Let us note that the expression
H(jw)F(A)/A in eq.(5) plays the role of
the ‘l large signal!t gain ( physical
interpretation of eq. (5) is that the
gain around the feedback loop is equal
to one). The expression can be easily
translated into ‘#large signal!l S-
parameters and can be also easily
expressed in terms of FET model
characteristics and YIG sphere
parameters. Consequently we can choose
devices and specify bias to achieve the
desirable oscillator properties.

2. Methods @ averaqinq @ inteqral
manifolds.

The method of harmonic balance is
applicable only to steady state
oscillations, for transient analysis of
nonlinear oscillatory systems the
methods of averaging and integral

manifolds are very effective[81. They
consist of lookinu for a sianal in the
form x(t) = A(tjcos(wt+p(i)) + y(t)
where y(t) is “small” and A(t),p(t) are
slowly time varying.
that A(t) and p(t)
from the second
equation of the form:

dA\dt =~g(A,p)

dp\dt =~h(A,p)

One prove; “[9,1O]
can be determined
order autonomous

(6)

In many cases the problem can be
further simplified, na:mely one can
predict the shape of oscillation’s
amplitude which reduces the problem to
that of simple motion on a surface in
state space (the so called integral
manifold) .

The justification of the methods is
quite involved, the results, however,
have clear physical and geometrical
interpretation, and the method can be
effectively applied to analysis of
synchronization, squegging and existence
of almost periodic (spurious) oscilla-
tions. One also proves that the constant
solutions of (6) coincide with those
obtained by the harmonic bi~lance method.

CONCLUSIONS

The YIG oscillator band is limited
by resonant properties of ‘the YIG sphere
on the low end, and by FET parameters
(gate length) on the high end.

A multi-octave oscillator covering
3.8 to 30GHz band has bsen developed.
Design effort consisted of two tasks:

1. Extension of oscillator band (up
to fundamental limits) , achieved via
small signal analysis.

2. Optimization of the nonlinear
steady state oscillations. The methods

of “large signal” S-parameters, harmonic
balance, averaging, and integral mani-
folds were compared and rigorously
justified.
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